

Physics

https://www.2pennyphysics.it/category/school-labhome/

Two-penny Physics.

Agenda

Mechanics

- Linear momentum conservation in 2D
- From the classical experiment to modern physics

Geometrical Optics

• Let's shed some light on coffee

Quantum Mechanics

• Quantum mechanics with a straw

Mechanics

Linear momentum conservation in 2D

Low-cost apparatus to explore the physics of collisions.

200

Physics

2 O

Presentation of the activity & Aims

Very versatile apparatus:

- 1. single student or groups
- 2. explores of a lot of aspects in collisions
- 3. students build it and make it effective.
- 4. can be used to foster creativity.

- Discover that in collisions there is a conserved quantity (Linear Momentum) and that the conservation is vectorial in nature
- Introduction to Modern Physics.

(Particle and Nuclear physics, Special Relativity, Quantum Mechanics)

 $2 \odot$

Physics

The idea

If we measure the lengths of the tracks of the coins we have information about the velocity vectors involved in the collision.

The friction F acts until the coins come to a stop, so the following relation holds

$$FL = \frac{1}{2}mv^2 \longrightarrow v \propto \sqrt{L}$$

Step 1.

Determine the final position of the incident coin if no collision occurs.

Step 2.

Choose the impact (initial) positions of both the coins.

Step 3.

Perform the collision and determine the final positions of the coins.

Step 4.

Draw the directions of the tracks and measure the lengths.

Step 5.

According to the relation

 $v \propto \sqrt{L}$

Draw the velocity vectors before and after the collision.

Step 6.

Look if the momentum vector is conserved:

$$m\vec{v}_1 + m\vec{v}_2 = m\vec{v}_1' + m\vec{v}_2'$$

$$\vec{v}_1 + \vec{v}_2 = \vec{v}_1' + \vec{v}_2'$$

$$\vec{v}_1 = \vec{v}_1' + \vec{v}_2'$$

2 O

Results achieved in the classroom

200

Physics

20

20

Physics

200

Physics

2 O

From the experiment to modern physics

This is a collision event in particle physics experiment.

The situation is exactly the same as the one we had in the coins collision experiment!

200

Physics

Conservation laws as a tool for discovery in nuclear physics

200

Physics

RECOILING HELIUM - Green Circle Radius (gGU) = 3.707

PION IN - Blue Circle Radius (gGU) = 15.335

PION OUT - Orange Circle Radius (gGU) = 11.101

Conservation laws as a tool for discovery in nuclear physics

200

Physics

Data from: PAINUC Experiment

RECOILING HELIUM Momentum 1.3

PION IN Momentum 2.2

PION OUT Momentum 1 45

lorenzo.galante@polito.it

Transferred Momentum

Spatial Scales of interaction

Heisenberg Relation for the quantum system Force Carrier:

$$\Delta p \cdot \Delta x \sim \hbar/2$$

 $\Delta p \sim p$

Therefore

We assume:

$$\Delta x \sim \frac{\hbar}{2p}$$

Spatial Scales of interaction

 $\Delta \mathbf{x}$ is the Dispersion in Space of the Force Carrier (FC).

It tells us about "how big" the FC is.

Therefore, it tells at what scales the interaction occurs

Geometrical Optics

200

Physics

Quantum Mechanics

20

Physics

Theoretical model

L = 0.208 m C = 340 m/s $f_1 = c/(2L) = 817 Hz;$ $f_2 = 2 f_0; f_3 = 3f_0 ...$

200

Physics

L = 0.208 m C = 340 m/s $f_1 = c/(2L) = 817 Hz;$ $f_2 = 2 f_0; f_3 = 3f_0 ...$

f [Hz] 807,000 -15 -18 -20 -22 -25 -28 -30 -32 -32 -35 -38 -40 -42 -45 -48 -50 -52 -55 -58 -60 807 Hz 1615 Hz 2390

Measurements

What's happening in the straw?

Wave confined in

Space!

What's happening in the straw?

What's happens in the atom?

The same thing

What's happens in the atom?

Quantization of

the Energy levels

The straw also explains the decreases of the spacing of the energy levels

The straw also explains the decreases of the spacing of the energy levels

L = 20 cm L = 7 cm

Quantum system in an infinite potential well

Schroedinger stationary wave equation

That may be rewritten ...

 $-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} = E\Psi$

$$\frac{\partial^2 \Psi}{\partial x^2} = -k^2 \, \Psi$$

 $i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi$

